Jumat, 31 Desember 2010

Hasil Evaluasi TPA dan CIE 2010

Daftar Hasil Evaluasi TPA dan CIE 2010

Petunjuk : Mohon diperhatikan kode Anda
Catatan : mulai tanggal 1 Januari 2011, bimbingan dilaksanakan sesuai jadwal

No Peserta Nilai Penguasaan
1 A1 125 cukup
2 A2 135 baik
3 A3 85 cukup
4 A4 125 cukup
5 A5 100 cukup
6 A6 155 baik
7 A7 155 baik
8 A8 155 baik
9 A9 145 baik
10 A10 120 cukup
11 A11 135 baik
12 A12 125 cukup
13 A13 135 baik
14 A14 135 baik
15 A15 135 baik
16 A16 135 baik
17 A17 160 baik
18 A18 155 baik
19 A19 155 baik
20 A20 155 baik
21 A21 150 baik
22 A22 135 baik
23 A23 150 baik
24 A24 115 cukup
25 A25 62 cukup
26 A26 30 cukup
27 A27 150 baik
28 A28 95 cukup
29 A29 75 cukup
30 A30 95 cukup
31 A31 40 cukup
32 A32 65 cukup
33 A33 40 cukup
34 A34 160 baik
35 A35 155 baik
36 B1 50 baik
37 B2 50 baik
38 B3 50 baik
39 B4 50 baik
40 B5 50 baik
41 B6 43,75 cukup
42 B7 50 baik
43 B8 50 baik
44 B9 0
45 B10 50 baik
46 B11 50 baik
47 B12 0
48 B13 68,75 baik
49 B14 56,25 baik
50 B15 0
51 B16 50 baik
52 B17 50 baik
53 B18 87,5 baik
54 C1 70 baik
55 C2 60 baik
56 C3 60 baik
57 C4 60 baik
58 C5 65 baik
59 C6 64 baik
60 C7 60 baik
61 C8 60 baik
62 C9 62 baik
63 C10 66 baik

Selamat Tahun Baru 2011...
Pertahankan dan perbaiki prestasi Ananda sekalian

Surabaya, 31 Desember 2010
Pembimbing,
Endrayana Putut

Kamis, 23 Desember 2010

2nd evaluation pre-CIE for Senior High School

Answer the following questions correctly, Submit your work at 07.00 a.m. on 25th December, 2010.

CAMBRIDE INTERNATIONAL EXAMINATION 2011 - REVISION EXERCISES 2
MATERIAL : TRIGONOMETRY + DIFFERENTIATION and ITS APPLICATIONS
1. By factorising 6 sin2x – 7 sin x + 2, show that the equation 6 sin^2(x) – 7 sin(x) + 2 = 0 is satisfied when sin x = ½ and sin x = 0.67.
Hence find all solutions in the range 00 ≤ x ≤ 3600.
2. Prove that : sin2 2p – sin2 p = sin p sin 3p. Hence or otherwise find all the values of p, such that sin^2(2p) – sin(2p) = 0, for which 0 ≤ p ≤ 360.
3. Find the greatest and the smallest values of the expression :
1/(5 sin⁡θ+12 cos⁡θ + 20)
4. Find the 1st and 2nd derivatives of the following function :
F(x) = 2 cos ((x-2)/(x+1))
5. A curve has the equation : y = x^3 – 3x^2 + 12 x, hence by completing the square or otherwise, prove that the gradient of the curve is never less than 9.
6. Find the equation of the tangent at the point (4,2) to the curve with equation y = √x .
7.For the following function, find f'(x), and any intervals in which f(x) is increasing :
x^3 – 3x^2 + 3x – 1
8. An open cylindrical wastepaper bin, radius p cm and capacity V cm3, is to have a surface area of 5000 cm2.
(a)Show that V= 0.5p(5000- π p^2)
(b)Calculate the maximum possible capacity of the bin.