Daftar Hasil Evaluasi TPA dan CIE 2010
Petunjuk : Mohon diperhatikan kode Anda
Catatan : mulai tanggal 1 Januari 2011, bimbingan dilaksanakan sesuai jadwal
No Peserta Nilai Penguasaan
1 A1 125 cukup
2 A2 135 baik
3 A3 85 cukup
4 A4 125 cukup
5 A5 100 cukup
6 A6 155 baik
7 A7 155 baik
8 A8 155 baik
9 A9 145 baik
10 A10 120 cukup
11 A11 135 baik
12 A12 125 cukup
13 A13 135 baik
14 A14 135 baik
15 A15 135 baik
16 A16 135 baik
17 A17 160 baik
18 A18 155 baik
19 A19 155 baik
20 A20 155 baik
21 A21 150 baik
22 A22 135 baik
23 A23 150 baik
24 A24 115 cukup
25 A25 62 cukup
26 A26 30 cukup
27 A27 150 baik
28 A28 95 cukup
29 A29 75 cukup
30 A30 95 cukup
31 A31 40 cukup
32 A32 65 cukup
33 A33 40 cukup
34 A34 160 baik
35 A35 155 baik
36 B1 50 baik
37 B2 50 baik
38 B3 50 baik
39 B4 50 baik
40 B5 50 baik
41 B6 43,75 cukup
42 B7 50 baik
43 B8 50 baik
44 B9 0
45 B10 50 baik
46 B11 50 baik
47 B12 0
48 B13 68,75 baik
49 B14 56,25 baik
50 B15 0
51 B16 50 baik
52 B17 50 baik
53 B18 87,5 baik
54 C1 70 baik
55 C2 60 baik
56 C3 60 baik
57 C4 60 baik
58 C5 65 baik
59 C6 64 baik
60 C7 60 baik
61 C8 60 baik
62 C9 62 baik
63 C10 66 baik
Selamat Tahun Baru 2011...
Pertahankan dan perbaiki prestasi Ananda sekalian
Surabaya, 31 Desember 2010
Pembimbing,
Endrayana Putut
blog ini untuk materi Matematika di lingkup sekolah menengah dan pendidikan tinggi, serta hasil penelitian di bidang Matematika, Pendidikan Matematika dan related science fields.
Jumat, 31 Desember 2010
Kamis, 23 Desember 2010
2nd evaluation pre-CIE for Senior High School
Answer the following questions correctly, Submit your work at 07.00 a.m. on 25th December, 2010.
CAMBRIDE INTERNATIONAL EXAMINATION 2011 - REVISION EXERCISES 2
MATERIAL : TRIGONOMETRY + DIFFERENTIATION and ITS APPLICATIONS
1. By factorising 6 sin2x – 7 sin x + 2, show that the equation 6 sin^2(x) – 7 sin(x) + 2 = 0 is satisfied when sin x = ½ and sin x = 0.67.
Hence find all solutions in the range 00 ≤ x ≤ 3600.
2. Prove that : sin2 2p – sin2 p = sin p sin 3p. Hence or otherwise find all the values of p, such that sin^2(2p) – sin(2p) = 0, for which 0 ≤ p ≤ 360.
3. Find the greatest and the smallest values of the expression :
1/(5 sinθ+12 cosθ + 20)
4. Find the 1st and 2nd derivatives of the following function :
F(x) = 2 cos ((x-2)/(x+1))
5. A curve has the equation : y = x^3 – 3x^2 + 12 x, hence by completing the square or otherwise, prove that the gradient of the curve is never less than 9.
6. Find the equation of the tangent at the point (4,2) to the curve with equation y = √x .
7.For the following function, find f'(x), and any intervals in which f(x) is increasing :
x^3 – 3x^2 + 3x – 1
8. An open cylindrical wastepaper bin, radius p cm and capacity V cm3, is to have a surface area of 5000 cm2.
(a)Show that V= 0.5p(5000- π p^2)
(b)Calculate the maximum possible capacity of the bin.
CAMBRIDE INTERNATIONAL EXAMINATION 2011 - REVISION EXERCISES 2
MATERIAL : TRIGONOMETRY + DIFFERENTIATION and ITS APPLICATIONS
1. By factorising 6 sin2x – 7 sin x + 2, show that the equation 6 sin^2(x) – 7 sin(x) + 2 = 0 is satisfied when sin x = ½ and sin x = 0.67.
Hence find all solutions in the range 00 ≤ x ≤ 3600.
2. Prove that : sin2 2p – sin2 p = sin p sin 3p. Hence or otherwise find all the values of p, such that sin^2(2p) – sin(2p) = 0, for which 0 ≤ p ≤ 360.
3. Find the greatest and the smallest values of the expression :
1/(5 sinθ+12 cosθ + 20)
4. Find the 1st and 2nd derivatives of the following function :
F(x) = 2 cos ((x-2)/(x+1))
5. A curve has the equation : y = x^3 – 3x^2 + 12 x, hence by completing the square or otherwise, prove that the gradient of the curve is never less than 9.
6. Find the equation of the tangent at the point (4,2) to the curve with equation y = √x .
7.For the following function, find f'(x), and any intervals in which f(x) is increasing :
x^3 – 3x^2 + 3x – 1
8. An open cylindrical wastepaper bin, radius p cm and capacity V cm3, is to have a surface area of 5000 cm2.
(a)Show that V= 0.5p(5000- π p^2)
(b)Calculate the maximum possible capacity of the bin.
Kamis, 25 November 2010
Examination of Trigonometry for grade X
Solve these following questions
1. Calculate the length of arc, whose locus is described by a radius R and angle X,
where :
a. R = 2 m and X = 1 radian
b. R = 3.67 km and X = 6.28 radians
2. The sector OAB, of a circle has radius R and perimeter 10 cm. The arc AB subtends
an angle X at the centre. If the area of the sector is A cm^2, show that :
a. A = 5R - R^2
b. the maximum area is 6.25, and what value of X does it occur?
3. A fisherman casts a distance of 80 m, during which the reel spins for 1.8
seconds. Calculate the rate of rotation in radians per second of the reel, which
has a 4 cm diameter. What assumptions have been applied in the answer?
4. Prove that: 1 + tan X. sin X. sec X = tan X. cosec X. sec X
Submit all of your work by mail, before Monday, 29th November, 2010
1. Calculate the length of arc, whose locus is described by a radius R and angle X,
where :
a. R = 2 m and X = 1 radian
b. R = 3.67 km and X = 6.28 radians
2. The sector OAB, of a circle has radius R and perimeter 10 cm. The arc AB subtends
an angle X at the centre. If the area of the sector is A cm^2, show that :
a. A = 5R - R^2
b. the maximum area is 6.25, and what value of X does it occur?
3. A fisherman casts a distance of 80 m, during which the reel spins for 1.8
seconds. Calculate the rate of rotation in radians per second of the reel, which
has a 4 cm diameter. What assumptions have been applied in the answer?
4. Prove that: 1 + tan X. sin X. sec X = tan X. cosec X. sec X
Submit all of your work by mail, before Monday, 29th November, 2010
Jumat, 12 November 2010
Evaluation of Mathematics for grade XI ( SMA 1 Blitar )
This evaluation is purposed for grade XI ( IA5 and IA 6 and also IA 8 + IA 1)
Solve the following correctly, send your answers by mail into endrayanaputut29@gmail.com before monday, 15th Nov,2010
1. A bag contains ten counters, of which six are red and four are green. A counter
is chosen at random, its colour is noted and it is replaced in the bag. A second
counter is then chosen at random. Find the probabilities that :
a. both counters are red
b. both counters are green
c. just one counter is red
d. at least one counter is red
e. the second counter is red
2. Events A, B, and C satisfy these conditions:
P(A) = 0.6; P(B) = 0.8; P(B|A) = 0.45; P(B and C) = 0.28
Calculate :
a. P(A and B)
b. P(C|B)
c. P(A|B)
3. Calculate the number of arrangements of the letter in the word NUMBER. How many
arrangements if at begin and end is a vowel ?
4. a. Given that 5 sin X + 12 cos X = R sin ( X + Y), find the values of X and Y
for which R > 0 and 0
b. Find all values of X between 0 and 360 satisfying :
(i) 5 sin X + 12 cos X = 4
(ii) 5 sin 2X + 12 cos 2X = 13 sin X
c. Find the greatest and smallest positive value of X at which this occurs:
12 cos X + 5 sin X + 20
References : Statistics 1 and Graded Exercises of Pure Mathematics
Solve the following correctly, send your answers by mail into endrayanaputut29@gmail.com before monday, 15th Nov,2010
1. A bag contains ten counters, of which six are red and four are green. A counter
is chosen at random, its colour is noted and it is replaced in the bag. A second
counter is then chosen at random. Find the probabilities that :
a. both counters are red
b. both counters are green
c. just one counter is red
d. at least one counter is red
e. the second counter is red
2. Events A, B, and C satisfy these conditions:
P(A) = 0.6; P(B) = 0.8; P(B|A) = 0.45; P(B and C) = 0.28
Calculate :
a. P(A and B)
b. P(C|B)
c. P(A|B)
3. Calculate the number of arrangements of the letter in the word NUMBER. How many
arrangements if at begin and end is a vowel ?
4. a. Given that 5 sin X + 12 cos X = R sin ( X + Y), find the values of X and Y
for which R > 0 and 0
(i) 5 sin X + 12 cos X = 4
(ii) 5 sin 2X + 12 cos 2X = 13 sin X
c. Find the greatest and smallest positive value of X at which this occurs:
12 cos X + 5 sin X + 20
References : Statistics 1 and Graded Exercises of Pure Mathematics
Rabu, 10 November 2010
Jumat, 29 Oktober 2010
Invitation for Math-lovers in Libels
Join with us !
If you are students of Libels on grade X and XI ( Science or Social subject ) and has more interest in mathematics field for research, join with us.
Make your group ( 3 students for each ) and create your research's proposal, submit to us before the end of november 2010. The proposal based on the general form of the rules in writing proposal. We suggest to choose 3 students with criterias such as : very powerful in math, fluent in english, has a good experience in studying literature.
If your proposal is choosen, then you can start to make a simple research and obtain the solutions for 3 month. You must present all of your work at the forum of mathematics in Libels, in front of the teachers.
Rewards :
1. In the end of the year lesson, we will show all of your work to all members of
Libels family.
2. Your team will be promoted to join with the events of KIR
3. Certificate from SMAN 15 Surabaya
So, what are you waiting for ?? Join with us NOW !!!
CP : Mr. Endrayana
0816 556844
email : endrayanaputut29@gmail.com
If you are students of Libels on grade X and XI ( Science or Social subject ) and has more interest in mathematics field for research, join with us.
Make your group ( 3 students for each ) and create your research's proposal, submit to us before the end of november 2010. The proposal based on the general form of the rules in writing proposal. We suggest to choose 3 students with criterias such as : very powerful in math, fluent in english, has a good experience in studying literature.
If your proposal is choosen, then you can start to make a simple research and obtain the solutions for 3 month. You must present all of your work at the forum of mathematics in Libels, in front of the teachers.
Rewards :
1. In the end of the year lesson, we will show all of your work to all members of
Libels family.
2. Your team will be promoted to join with the events of KIR
3. Certificate from SMAN 15 Surabaya
So, what are you waiting for ?? Join with us NOW !!!
CP : Mr. Endrayana
0816 556844
email : endrayanaputut29@gmail.com
Tugas Kelas XI-IA 5,XI-IA 6, XI-IA 7
Submit your work at friday, November, 5th
1. Prove the following identities :
a. ( sin x - sin 2x + sin 3x ) / ( cos x - cos 2x + cos 3x ) = tan 2x
b. cos 3p + sin 3p = ( 1 + 2 sin 2p )( cos p - sin p )
c. 2 tan 2c = ( tan 2c - sin 2c )( cosec^2 c)
d. sin p. cos 2p. sin 3p = 0.25 ( 1 - cos 2p + cos 4p - cos 6p)
e. sin k + sin 2k + sin 3k = 2 sin k cos k ( 2 cos k + 1 )
f. In a triangle PQR, sin 2P + sin 2Q + sin 2R = 4 sinP sinQ sin R
g. In a triangle ABC, sinB sinC sin(B-C) + sinC sinA sin(C-A)
+ sinA sinB sin(A-B) = - sin(B-C) sin(C-A) sin(A-B)
2. Solve the following equations for the angles between 0 to 2 phi radians.
a. cos 5x - cos x = sin 3x
b. sin 2x - sin 4x + sin 6x = 0
c. cos 3x - sin 3x = 2 sinx + cos x
3. Given that sin x = m + n and cos x = m - n.
a. show that m^2 - n^2 = 0.5 sin 2x
b. express m/n in terms of tan x. Hence find the value of tan x if m = 3n.
Do your best, wishes that you can get more advantages from this task.
1. Prove the following identities :
a. ( sin x - sin 2x + sin 3x ) / ( cos x - cos 2x + cos 3x ) = tan 2x
b. cos 3p + sin 3p = ( 1 + 2 sin 2p )( cos p - sin p )
c. 2 tan 2c = ( tan 2c - sin 2c )( cosec^2 c)
d. sin p. cos 2p. sin 3p = 0.25 ( 1 - cos 2p + cos 4p - cos 6p)
e. sin k + sin 2k + sin 3k = 2 sin k cos k ( 2 cos k + 1 )
f. In a triangle PQR, sin 2P + sin 2Q + sin 2R = 4 sinP sinQ sin R
g. In a triangle ABC, sinB sinC sin(B-C) + sinC sinA sin(C-A)
+ sinA sinB sin(A-B) = - sin(B-C) sin(C-A) sin(A-B)
2. Solve the following equations for the angles between 0 to 2 phi radians.
a. cos 5x - cos x = sin 3x
b. sin 2x - sin 4x + sin 6x = 0
c. cos 3x - sin 3x = 2 sinx + cos x
3. Given that sin x = m + n and cos x = m - n.
a. show that m^2 - n^2 = 0.5 sin 2x
b. express m/n in terms of tan x. Hence find the value of tan x if m = 3n.
Do your best, wishes that you can get more advantages from this task.
Senin, 18 Oktober 2010
TUGAS MASA PKL ke-1
TUGAS MATEMATIKA Minggu ke-1
SEKESAL SURABAYA
Kelas XII A,B,C
Instruktur : Endrayana Putut
Kerjakan di kertas folio dan dikumpulkan tanggal 6 November 2010
1. Tentukan turunan dari fungsi berikut :
a. f(x) = x^2 . sin 4x
b. f(x) = ( 2x + 3 ): ( x - 3 )
2. Suatu perusahaan memproduksi obat dengan merk A, memiliki fungsi biaya, yaitu :
B(x) = 4x^2 - 8x + 9 dalam ribuan rupiah. Jika ingin diminimumkan biayanya, maka
berapa banyak obat ( x ) yang harus diproduksi? Tentukan biaya minimum tersebut.
3. Suatu kurva memiliki persamaan y = x^2 - 3x - 4. Tentukan persamaan garis
singgung di titik (1,-6).
4. Tentukan interval dimana fungsi y = x^3 - 3x^2 - 9x + 5 adalah fungsi naik.
SEKESAL SURABAYA
Kelas XII A,B,C
Instruktur : Endrayana Putut
Kerjakan di kertas folio dan dikumpulkan tanggal 6 November 2010
1. Tentukan turunan dari fungsi berikut :
a. f(x) = x^2 . sin 4x
b. f(x) = ( 2x + 3 ): ( x - 3 )
2. Suatu perusahaan memproduksi obat dengan merk A, memiliki fungsi biaya, yaitu :
B(x) = 4x^2 - 8x + 9 dalam ribuan rupiah. Jika ingin diminimumkan biayanya, maka
berapa banyak obat ( x ) yang harus diproduksi? Tentukan biaya minimum tersebut.
3. Suatu kurva memiliki persamaan y = x^2 - 3x - 4. Tentukan persamaan garis
singgung di titik (1,-6).
4. Tentukan interval dimana fungsi y = x^3 - 3x^2 - 9x + 5 adalah fungsi naik.
Jumat, 15 Oktober 2010
Probability
1st Examination
Grade : XI ( SMA 1 Blitar )
Material : Probability
1. There are 4 different English books, 5 different Mathematics books and
3 different Science books on a bookshelf. Find the number of ways in which
a pair of books of different types can be chosen.
2. If 3 British, 3 Indians, 4 Chinese are to be seated in a straight row with 12
seats. how many seating arrangements are possible? If people of the same race
must sit together.
3. In each turn of a game, a player throws a fair die repeatedly until the number
5 is obtained or after he throws it 6 times.
a. Find the probability that the player has exactly 6 throws.
b. Find the probability that the player has more than 3 throws
c. Find the conditional probability that the player has exactly 4 throws in
a turn, given that he has more than 3 throws.
Date of submission : 23 Oct, 2010
Grade : XI ( SMA 1 Blitar )
Material : Probability
1. There are 4 different English books, 5 different Mathematics books and
3 different Science books on a bookshelf. Find the number of ways in which
a pair of books of different types can be chosen.
2. If 3 British, 3 Indians, 4 Chinese are to be seated in a straight row with 12
seats. how many seating arrangements are possible? If people of the same race
must sit together.
3. In each turn of a game, a player throws a fair die repeatedly until the number
5 is obtained or after he throws it 6 times.
a. Find the probability that the player has exactly 6 throws.
b. Find the probability that the player has more than 3 throws
c. Find the conditional probability that the player has exactly 4 throws in
a turn, given that he has more than 3 throws.
Date of submission : 23 Oct, 2010
Kamis, 14 Oktober 2010
1st Examination : Quadratics
1st Examination of Mathematics
Material : Quadratics
Grade : X
School : SMA 1 Blitar
Answer on your paper correctly!
1. Find the range of values of x for which :
(x+2)^2 - 8(x+2) + 15 > 0
2. Given that p and q,are the roots of 2x^2 + 5x - 4 = 0.
Calculate the value of : p^3 + q^3
Hence, construct the new quadratic equation which roots are p/q and q/p.
3. Find the range values of k for which k(x^2 + 2x + 3) - 4x - 2 is always positive
for all real values of x.
4. The curve y = (k - 6)x^2 - 8x + k does not intersect the x-axis and it has
a minimum point. Find the range values of k.
Note : Date of submission : Oct, 22
Do by yourself on a folio size.
Material : Quadratics
Grade : X
School : SMA 1 Blitar
Answer on your paper correctly!
1. Find the range of values of x for which :
(x+2)^2 - 8(x+2) + 15 > 0
2. Given that p and q,are the roots of 2x^2 + 5x - 4 = 0.
Calculate the value of : p^3 + q^3
Hence, construct the new quadratic equation which roots are p/q and q/p.
3. Find the range values of k for which k(x^2 + 2x + 3) - 4x - 2 is always positive
for all real values of x.
4. The curve y = (k - 6)x^2 - 8x + k does not intersect the x-axis and it has
a minimum point. Find the range values of k.
Note : Date of submission : Oct, 22
Do by yourself on a folio size.
Sabtu, 25 September 2010
Curahan Hati
Mengapa orang selalu ingin berada di puncak kejayaan?
Jawabannya adalah mengalami kesenangan adalah hal yang diidhamkan semua orang,
meraihnya adalah kepuasan, tapi bertahan dan sukses adalah hal yang paling
hebat karena bertahan jauh lebih sulit daripada meraihnya...
Jawabannya adalah mengalami kesenangan adalah hal yang diidhamkan semua orang,
meraihnya adalah kepuasan, tapi bertahan dan sukses adalah hal yang paling
hebat karena bertahan jauh lebih sulit daripada meraihnya...
Kamis, 23 September 2010
Quadratic Function
Paper for grade X SMA 1 Blitar ( X-8 and X-9 )
Day : Friday, September 24
Please submit your work next week ( Oct, 2 )
1. Find the range of values of x for which : 3(x-1)^2 + 24 > 2 ( x + 1)^2
2. Find the values of k for which the quadratic equation 9x^2 - kx + (k - 7) = 0 has
(i) one positive and one negative root
(ii)one root is twice the value of the other
3. Show that for all real values of p and q, y = - (1+p^2)x^2 + 2pqx - (2q^2+1) is
is always negative for all real values of x.
4. Show that x^2 - x + 1 is always positive for all real values of x. Hence, or
otherwise, find the range of values of a if the inequality
( x^2 + ax - 2):( x^2 - x + 1) < 2 is satisfied for all real values of x.
Day : Friday, September 24
Please submit your work next week ( Oct, 2 )
1. Find the range of values of x for which : 3(x-1)^2 + 24 > 2 ( x + 1)^2
2. Find the values of k for which the quadratic equation 9x^2 - kx + (k - 7) = 0 has
(i) one positive and one negative root
(ii)one root is twice the value of the other
3. Show that for all real values of p and q, y = - (1+p^2)x^2 + 2pqx - (2q^2+1) is
is always negative for all real values of x.
4. Show that x^2 - x + 1 is always positive for all real values of x. Hence, or
otherwise, find the range of values of a if the inequality
( x^2 + ax - 2):( x^2 - x + 1) < 2 is satisfied for all real values of x.
Sabtu, 04 September 2010
SOAL PERSIAPAN OSN MATEMATIKA 2010
SOAL OSN MATEMATIKA 2010
SMA NEGERI 1 BLITAR KELAS OLIMPIADE
Pendamping : Endrayana Putut L.E.,S.Si
Materi : Kombinatorika
Dikerjakan di kertas folio dan dikumpulkan tanggal 25 September 2010
1. Diantara 51 bilangan yang diambil dari {1,2,3,...,100} maka selalu ada 2 bilangan prima relatif. ( dua bilangan adalah prima relatif jika FPB = 1 )
2. Buktikan bahwa ada dua bilangan dalam bentuk 3^p dan 3^q dimana selisihnya habis dibagi 1997.
3. Tunjukkan bahwa setiap diambil 3 bilangan bulat positif sebarang dan berbeda, maka pasti ada 2 bilangan sebut sebagai a dan b, a>b, sehingga ab(a^2 - b^2) habis dibagi oleh 10.
SMA NEGERI 1 BLITAR KELAS OLIMPIADE
Pendamping : Endrayana Putut L.E.,S.Si
Materi : Kombinatorika
Dikerjakan di kertas folio dan dikumpulkan tanggal 25 September 2010
1. Diantara 51 bilangan yang diambil dari {1,2,3,...,100} maka selalu ada 2 bilangan prima relatif. ( dua bilangan adalah prima relatif jika FPB = 1 )
2. Buktikan bahwa ada dua bilangan dalam bentuk 3^p dan 3^q dimana selisihnya habis dibagi 1997.
3. Tunjukkan bahwa setiap diambil 3 bilangan bulat positif sebarang dan berbeda, maka pasti ada 2 bilangan sebut sebagai a dan b, a>b, sehingga ab(a^2 - b^2) habis dibagi oleh 10.
Senin, 30 Agustus 2010
SOAL PELUANG SMK XII-SEKESAL SBY
Tugas 1 Mata Pelajaran Matematika
Sekolah : SEKESAL Surabaya Instruktur : Endrayana Putut, S.Si.
Kerjakan di folio dan dikumpulkan pada tanggal 20 September 2010.
1. Terdapat 5 bilangan 0,1,2,3,4 akan disusun menjadi bilangan yang terdiri dari 3
angka. Berapa banyak cara menyusun apabila tidak boleh terjadi perulangan ?
2. Terdapat seperangkat kartu bridge akan diambil 2 kartu satu demi satu tanpa
dikembalikan. Berapa peluang terambilnya kartu As dan berwarna merah?
3. Sekelompok ibu-ibu duduk mengelilingi meja bundar. Jika ada 10 ibu - ibu dan
Bu Amir ingin selalu berdekatan dengan Bu Ahmad, maka berapa cara mereka bisa
mengatur tempat duduknya ?
4. Kata " MISS UNIVERSE " akan disusun secara acak, berapa banyak cara menyusun
huruf pembentuk kata tersebut?
5. Jika C(n,2)=C(n,n-2) maka berapakah nilai n?
Sekolah : SEKESAL Surabaya Instruktur : Endrayana Putut, S.Si.
Kerjakan di folio dan dikumpulkan pada tanggal 20 September 2010.
1. Terdapat 5 bilangan 0,1,2,3,4 akan disusun menjadi bilangan yang terdiri dari 3
angka. Berapa banyak cara menyusun apabila tidak boleh terjadi perulangan ?
2. Terdapat seperangkat kartu bridge akan diambil 2 kartu satu demi satu tanpa
dikembalikan. Berapa peluang terambilnya kartu As dan berwarna merah?
3. Sekelompok ibu-ibu duduk mengelilingi meja bundar. Jika ada 10 ibu - ibu dan
Bu Amir ingin selalu berdekatan dengan Bu Ahmad, maka berapa cara mereka bisa
mengatur tempat duduknya ?
4. Kata " MISS UNIVERSE " akan disusun secara acak, berapa banyak cara menyusun
huruf pembentuk kata tersebut?
5. Jika C(n,2)=C(n,n-2) maka berapakah nilai n?
Jumat, 06 Agustus 2010
Soal latihan Lingkaran untuk SMK 2010
1. Tentukan persamaan lingkaran yang berpusat di P(2,3) dan berjari-jari 5.
2. Tentukan persamaan lingkaran yang berpusat di P(0,0) dan radius 3.
3. Tentukan persamaan lingkaran yang berpusat di P(0,0) dan menyinggung garis x + y = 2.
4. Tentukan persamaan lingkaran yang berpusat di P(-2,2) dan menyinggung garis x - y = 2.
5. Tentukan persamaan lingkaran yang menyinggung sumbu X dan berpusat di (4,3).
6. Tentukan persamaan lingkaran yang menyinggung sumbu Y dan berpusat di (- 4, - 3).
7. Tentukan persamaan garis singgung lingkaran yang melalui titik (2,1) pada lingkaran yang berpusat di (0,0) dan berjari-jari 1.
8. Tentukan persamaan garis singgung pada lingkaran x^2 + y^2 - 4x - 6y = 0 yang tegak lurus garis 2x - y = 0.
2. Tentukan persamaan lingkaran yang berpusat di P(0,0) dan radius 3.
3. Tentukan persamaan lingkaran yang berpusat di P(0,0) dan menyinggung garis x + y = 2.
4. Tentukan persamaan lingkaran yang berpusat di P(-2,2) dan menyinggung garis x - y = 2.
5. Tentukan persamaan lingkaran yang menyinggung sumbu X dan berpusat di (4,3).
6. Tentukan persamaan lingkaran yang menyinggung sumbu Y dan berpusat di (- 4, - 3).
7. Tentukan persamaan garis singgung lingkaran yang melalui titik (2,1) pada lingkaran yang berpusat di (0,0) dan berjari-jari 1.
8. Tentukan persamaan garis singgung pada lingkaran x^2 + y^2 - 4x - 6y = 0 yang tegak lurus garis 2x - y = 0.
Senin, 02 Agustus 2010
soal latihan persiapan OSN Matematika 2010-2011
1. Tunjukkan bahwa untuk setiap bilangan bulat positif n maka 121n − 25n + 1900n − (−4)n habis dibagi 2000.
2. Sebuah fungsi f didefinisikan pada bilangan bulat yang memenuhi f(1) + f(2) + ⋅⋅⋅ + f(n) = n2f(n) dan f(1) = 1996 untuk semua n > 1. Hitunglah nilai f(1996).
3. Tentukan semua bilangan bulat positif m, n dengan n bilangan ganjil yang memenuhi :
1/m + 4/n = 1/12
4. Selesaikan persamaan simultan : ab + c + d = 3, bc + a + d = 5, cd + a + b = 2, da + b + c = 6
dengan a, b , c dan d adalah bilangan real.
5. Misalkan n adalah bilangan bulat lebih dari 6. Buktikan bahwa n − 1 dan n + 1 keduanya prima maka n2(n2 + 16) habis dibagi 720.
2. Sebuah fungsi f didefinisikan pada bilangan bulat yang memenuhi f(1) + f(2) + ⋅⋅⋅ + f(n) = n2f(n) dan f(1) = 1996 untuk semua n > 1. Hitunglah nilai f(1996).
3. Tentukan semua bilangan bulat positif m, n dengan n bilangan ganjil yang memenuhi :
1/m + 4/n = 1/12
4. Selesaikan persamaan simultan : ab + c + d = 3, bc + a + d = 5, cd + a + b = 2, da + b + c = 6
dengan a, b , c dan d adalah bilangan real.
5. Misalkan n adalah bilangan bulat lebih dari 6. Buktikan bahwa n − 1 dan n + 1 keduanya prima maka n2(n2 + 16) habis dibagi 720.
UKK semester 3 AKSEL 2010
ULANGAN KENAIKAN KELAS
SMA NEGERI 15 SURABAYA
Jl. Menanggal Selatan No.103 Gayungan, 8290473 & 8275226
Mata Pelajaran : Matematika Kelas : X – AKSEL Waktu : 90 menit TP : 2009-2010
PILIHLAH JAWABAN YANG BENAR !
1. Given the following data as folows :
9, 8, 7, 9, 6, 3, 6, 5, 6, 8, 6, 4
Determine the value of the range of inter-quartile.
a. 1.25
b. 1.5
c. 1.75
d. 2
e. 2.4
2. Seorang ayah memiliki 6 anak, umur mereka adalah :
3x ; 5x ; 2x + 7 ; 4x -1 ; x2 + x ; x2 – 2x
Jika rata-rata umur mereka adalah 26 tahun, maka usia anak tertua adalah………. …..tahun
a. 39
b. 40
c. 41
d. 42
e. 43
3. In a mathematics test, 50 pupils obtained the values of mean and median, respectively, are 35 and 40. The teacher modified by multiplied by 2 and reduced by 15 for each of datums. It will be obtained that becomes...........
a. mean 55 median 65
b. mean 55 median 60
c. mean 65 median 55
d. mean 55 median 55
e. mean 50 median 60
4. Mr. Casey membeli baju baru, terbuat dari woll atau katun. Dia memilih warna abu-abu, biru, hitam, atau ungu dan memasangkannya dengan dasi bermotif bunga, garis-garis, atau berpola. Berapa banyak pasangan berbeda dari baju dan dasinya ?
a. 24
b. 16
c. 12
d. 8
e. 4
5. Three boys and three girls are sitting on straightly at six chairs. How many ways they can sitting on together?
a. 144
b. 128
c. 108
d. 72
e. 36
6. Gina mempunyai 6 coin 500-an, 4 coin 200-an, and 5 coin 100-an di dompetnya. Dia mengambil satu coin secara acak. Berapa peluang terambilnya coin 200-an atau 100-an ?
a. 0.6
b. 0.5
c. 0.4
d. 0.3
e. 0.2
7. John has the following variety of CDs, in no particular order, in a carrying case : 5 rap CDs, 9 rock CDs, 4 country CDs, and 2 top 40 CDs. Two are selected at random. What is the probability that one is rap CD and another is rock CD ?
8. Sebuah kartu diambil dari seperangkat kartu bridge. Berapa peluang kartu yang terambil berwarna merah atau bergambar orang ?
9. Jika P - Q = cos A dan = sin A, maka P2+Q2 = …
a. 0
b. 1
c. ½
d. -¼
e. ¼
10. Nilai dari tan 750 - tan 150 = ….
a. 0
b. ½
c. 2
d. ¼
e. 4
11. If Cos (A+B) = 2/5 and cos A cos B = ¾ , then the result of tg A . tg B is........
a. 7/20
b. 7/15
c. 8/15
d. 5/9
e. 1
12. Jika tg A = ¾ , tg B = 12/5, A dan B sudut lancip, maka tg ( A+ B ) = …..
a. 63/16
b. 63/56
c. –2/56
d. –63/16
e. – 63/56
13. If p = cos A + sin A and q = cos A – sin A, then p2 – q2 = ........
a. 2 sin 2A
b. 2 cos A
c. 2 sin A
d. – 2 sin 2A
e. – 2 cos A
14. By using the identity, we can express the form sin (x-y) + 2 sin x + sin (x + y ) as the form …
a. 4 sin x . cos2 ½ y
b. 4 sin x . cos 2 y
c. 4 cos x. sin2 ½ y
d. 4 cos x. sin y
e. 4 cos x. sin ½ y
15. If a point ( - 5, k ) lies on the circle, that is x2 + y2 + 2x – 5y – 21 = 0, then k equals .........
a. – 1 or – 2
b. 2 or 4
c. – 1 or 6
d. 0 or 3
e. 1 or – 6
16. Diberikan dua titik P( -1, 3) dan Q(3,1). Jika P dan Q adalah diameter, maka persamaan lingkaran....
a. x2 + y2 – 2x – 4y = 0
b. x2 + y2 + 2x – 4y = 0
c. x2 + y2 – 2x + 4y = 0
d. x2 + y2 + 4x – 2y = 0
e. x2 + y2 – 4x – 2y = 0
17. Persamaan garis singgung melalui titik (5, 1) pada lingkaran x2 + y2 – 4x + 6y – 12 = 0 adalah.......
a. 3x + 4y – 19 = 0
b. 3x – 4y – 19 = 0
c. 4x – 3y + 19 = 0
d. x + 7y – 26 = 0
e. x – 7y – 26 = 0
18. Diketahui lingkaran L, dengan persamaan : x2 + y2 – 6x + 2y + 5 = 0. Pusat dan jari-jarinya berturut – turut adalah………….
a. ( 3, - 1) ; 5
b. ( - 3, - 1) ; 5
c. ( - 3, - 1) ;
d. ( 0 , - 1) ;
e. ( 3, - 1) ;
SMA NEGERI 15 SURABAYA
Jl. Menanggal Selatan No.103 Gayungan, 8290473 & 8275226
Mata Pelajaran : Matematika Kelas : X – AKSEL Waktu : 90 menit TP : 2009-2010
PILIHLAH JAWABAN YANG BENAR !
1. Given the following data as folows :
9, 8, 7, 9, 6, 3, 6, 5, 6, 8, 6, 4
Determine the value of the range of inter-quartile.
a. 1.25
b. 1.5
c. 1.75
d. 2
e. 2.4
2. Seorang ayah memiliki 6 anak, umur mereka adalah :
3x ; 5x ; 2x + 7 ; 4x -1 ; x2 + x ; x2 – 2x
Jika rata-rata umur mereka adalah 26 tahun, maka usia anak tertua adalah………. …..tahun
a. 39
b. 40
c. 41
d. 42
e. 43
3. In a mathematics test, 50 pupils obtained the values of mean and median, respectively, are 35 and 40. The teacher modified by multiplied by 2 and reduced by 15 for each of datums. It will be obtained that becomes...........
a. mean 55 median 65
b. mean 55 median 60
c. mean 65 median 55
d. mean 55 median 55
e. mean 50 median 60
4. Mr. Casey membeli baju baru, terbuat dari woll atau katun. Dia memilih warna abu-abu, biru, hitam, atau ungu dan memasangkannya dengan dasi bermotif bunga, garis-garis, atau berpola. Berapa banyak pasangan berbeda dari baju dan dasinya ?
a. 24
b. 16
c. 12
d. 8
e. 4
5. Three boys and three girls are sitting on straightly at six chairs. How many ways they can sitting on together?
a. 144
b. 128
c. 108
d. 72
e. 36
6. Gina mempunyai 6 coin 500-an, 4 coin 200-an, and 5 coin 100-an di dompetnya. Dia mengambil satu coin secara acak. Berapa peluang terambilnya coin 200-an atau 100-an ?
a. 0.6
b. 0.5
c. 0.4
d. 0.3
e. 0.2
7. John has the following variety of CDs, in no particular order, in a carrying case : 5 rap CDs, 9 rock CDs, 4 country CDs, and 2 top 40 CDs. Two are selected at random. What is the probability that one is rap CD and another is rock CD ?
8. Sebuah kartu diambil dari seperangkat kartu bridge. Berapa peluang kartu yang terambil berwarna merah atau bergambar orang ?
9. Jika P - Q = cos A dan = sin A, maka P2+Q2 = …
a. 0
b. 1
c. ½
d. -¼
e. ¼
10. Nilai dari tan 750 - tan 150 = ….
a. 0
b. ½
c. 2
d. ¼
e. 4
11. If Cos (A+B) = 2/5 and cos A cos B = ¾ , then the result of tg A . tg B is........
a. 7/20
b. 7/15
c. 8/15
d. 5/9
e. 1
12. Jika tg A = ¾ , tg B = 12/5, A dan B sudut lancip, maka tg ( A+ B ) = …..
a. 63/16
b. 63/56
c. –2/56
d. –63/16
e. – 63/56
13. If p = cos A + sin A and q = cos A – sin A, then p2 – q2 = ........
a. 2 sin 2A
b. 2 cos A
c. 2 sin A
d. – 2 sin 2A
e. – 2 cos A
14. By using the identity, we can express the form sin (x-y) + 2 sin x + sin (x + y ) as the form …
a. 4 sin x . cos2 ½ y
b. 4 sin x . cos 2 y
c. 4 cos x. sin2 ½ y
d. 4 cos x. sin y
e. 4 cos x. sin ½ y
15. If a point ( - 5, k ) lies on the circle, that is x2 + y2 + 2x – 5y – 21 = 0, then k equals .........
a. – 1 or – 2
b. 2 or 4
c. – 1 or 6
d. 0 or 3
e. 1 or – 6
16. Diberikan dua titik P( -1, 3) dan Q(3,1). Jika P dan Q adalah diameter, maka persamaan lingkaran....
a. x2 + y2 – 2x – 4y = 0
b. x2 + y2 + 2x – 4y = 0
c. x2 + y2 – 2x + 4y = 0
d. x2 + y2 + 4x – 2y = 0
e. x2 + y2 – 4x – 2y = 0
17. Persamaan garis singgung melalui titik (5, 1) pada lingkaran x2 + y2 – 4x + 6y – 12 = 0 adalah.......
a. 3x + 4y – 19 = 0
b. 3x – 4y – 19 = 0
c. 4x – 3y + 19 = 0
d. x + 7y – 26 = 0
e. x – 7y – 26 = 0
18. Diketahui lingkaran L, dengan persamaan : x2 + y2 – 6x + 2y + 5 = 0. Pusat dan jari-jarinya berturut – turut adalah………….
a. ( 3, - 1) ; 5
b. ( - 3, - 1) ; 5
c. ( - 3, - 1) ;
d. ( 0 , - 1) ;
e. ( 3, - 1) ;
Quiz Corner.
Today is monday, Mr. Boim wants to teach Mathematics in XI-IPA 12.
Ahmed, one of the naughty boy in that class wants to go to the toilet. He is waiting for Mr. Boim. Five minutes later Mr. Boim came to that class, Ahmed standed up and said " Sir, may I go to the toilet ? ". Mr. Boim said," Sure, you can. But could you help me please to solve this problem before your time to go? Ahmed said " OK, Sir !!", he spoke very bravely. This is the problem : Can you show that 2 = 0 ? Now, please help him to solve this problem. If you can answer, post it to the following address :
endrayanaputut29@gmail.com
Ahmed, one of the naughty boy in that class wants to go to the toilet. He is waiting for Mr. Boim. Five minutes later Mr. Boim came to that class, Ahmed standed up and said " Sir, may I go to the toilet ? ". Mr. Boim said," Sure, you can. But could you help me please to solve this problem before your time to go? Ahmed said " OK, Sir !!", he spoke very bravely. This is the problem : Can you show that 2 = 0 ? Now, please help him to solve this problem. If you can answer, post it to the following address :
endrayanaputut29@gmail.com
Sabtu, 31 Juli 2010
Tips dan trik jitu memilih bimbingan Cambridge Matematika di Surabaya
Jangan sampai salah Anda memilih tempat bimbingan Cambridge Matematika yang benar di Surabaya. Ada beberapa kriteria dari pembimbing yang dapat Anda pilih, antara lain :
1. Pembimbing adalah guru Matematika / konsultan Matematika di sekolah RSBI / Sekolah Internasional
2. Pembimbing adalah lulusan PTN jurusan Matematika / S-2 Matematika
3. Pembimbing lancar berbahasa Inggris di bidang Matematika / pernah ikut pelatihan tingkat nasional / internasional
4. Pembimbing berpengalaman minimal 3 tahun di bidang ujian Cambridge Matematika
5. Memahami kurikulum Cambridge, tidak sekedar tahu.
6. Mengerti soal - soal CIE mulai level-O, AS, dan A level.
Perhatikan kriteria - kriteria diatas, gunakan sebagai acuan dalam pemilihan guru pembimbing Anda. Semoga sukses dalam CIE-Mathematics Anda.
1. Pembimbing adalah guru Matematika / konsultan Matematika di sekolah RSBI / Sekolah Internasional
2. Pembimbing adalah lulusan PTN jurusan Matematika / S-2 Matematika
3. Pembimbing lancar berbahasa Inggris di bidang Matematika / pernah ikut pelatihan tingkat nasional / internasional
4. Pembimbing berpengalaman minimal 3 tahun di bidang ujian Cambridge Matematika
5. Memahami kurikulum Cambridge, tidak sekedar tahu.
6. Mengerti soal - soal CIE mulai level-O, AS, dan A level.
Perhatikan kriteria - kriteria diatas, gunakan sebagai acuan dalam pemilihan guru pembimbing Anda. Semoga sukses dalam CIE-Mathematics Anda.
Matematika adalah "HANTU" bagi semua pelajar
Matematika adalah pelajaran yang sampai saat ini masih menjadi momok bagi pelajar di seluruh penjuru nusantara. Sebagai suatu hal yang sangat disegani oleh para pelajar menjadikan Matematika menjadi "hantu" di dalam belajar. Namun sesungguhnya, apabila kita mampu mengerti lebih lanjut dan mengenal lebih dekat dari subjek ini dapat menjadikan Matematika sebagai hal yang sangat menyenangkan. Mempelajari hanya teori dan rumus sajalah yang terkadang menjadikan Matematika menjadi hal yang kurang menarik bahkan membosankan. Padahal sebenarnya, manfaat mata pelajaran ini di dalam kehidupan kita sehari-hari sangatlah banyak. Jika kita bisa mengetahui manfaat dari mempelajari suatu topik di dalam Matematika akan mampu menghapus pikiran kita bahwa Matematika adalah hantu bagi pelajar.
Langganan:
Postingan (Atom)